Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 14(11)2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36366506

RESUMEN

Pregnant patients have increased morbidity and mortality in the setting of SARS-CoV-2 infection. The exposure of pregnant patients in New York City to SARS-CoV-2 is not well understood due to early lack of access to testing and the presence of asymptomatic COVID-19 infections. Before the availability of vaccinations, preventative (shielding) measures, including but not limited to wearing a mask and quarantining at home to limit contact, were recommended for pregnant patients. Using universal testing data from 2196 patients who gave birth from April through December 2020 from one institution in New York City, and in comparison, with infection data of the general population in New York City, we estimated the exposure and real-world effectiveness of shielding in pregnant patients. Our Bayesian model shows that patients already pregnant at the onset of the pandemic had a 50% decrease in exposure compared to those who became pregnant after the onset of the pandemic and to the general population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Embarazo , Femenino , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias , Ciudad de Nueva York/epidemiología , Teorema de Bayes
2.
Sci Adv ; 7(43): eabh4429, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34678070

RESUMEN

Climate warming is unequivocal and exceeds internal climate variability. However, estimates of the magnitude of decadal-scale variability from models and observations are uncertain, limiting determination of the fraction of warming attributable to external forcing. Here, we use statistical learning to extract a fingerprint of climate change that is robust to different model representations and magnitudes of internal variability. We find a best estimate forced warming trend of 0.8°C over the past 40 years, slightly larger than observed. It is extremely likely that at least 85% is attributable to external forcing based on the median variability across climate models. Detection remains robust even when evaluated against models with high variability and if decadal-scale variability were doubled. This work addresses a long-standing limitation in attributing warming to external forcing and opens up opportunities even in the case of large model differences in decadal-scale variability, model structural uncertainty, and limited observational records.

3.
Nat Food ; 2(9): 642-643, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37117476
4.
Curr Clim Change Rep ; 6(2): 47-54, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32626649

RESUMEN

PURPOSE OF REVIEW: What does recent work say about how changes in convective organization could lead to changes in extreme precipitation? RECENT FINDINGS: Changing convective organization is one mechanism that could explain variation in extreme precipitation increase through dynamics. In models, the effects of convective self-aggregation on extreme precipitation are sensitive to parameterization, among other factors. In both models and observations, whether or not convective organization influences extreme precipitation is sensitive to the time and space scales analyzed, affecting extreme precipitation on some scales but not others. While trends in observations in convective organization associated with mean precipitation have been identified, it has not yet been established whether these trends are robust or relevant for events associated with extreme precipitation. SUMMARY: Recent work has documented a somewhat view of how changes in convective organization could affect extreme precipitation with warming, and it remains unclear whether or not they do.

5.
Ann N Y Acad Sci ; 1472(1): 49-75, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246848

RESUMEN

Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2-3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in-storm and larger-scale feedback processes, while changes in large-scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.


Asunto(s)
Cambio Climático , Inundaciones , Lluvia , Ciclo Hidrológico , Humanos , Temperatura
6.
Science ; 360(6393): 1072-1073, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29880673
7.
Curr Clim Change Rep ; 4(4): 355-370, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30931244

RESUMEN

PURPOSE OF REVIEW: The intertropical convergence zone (ITCZ) is a planetary-scale band of heavy precipitation close to the equator. Here, we consider the response of the ITCZ structure to climate change using observations, simulations, and theory. We focus on the substantial yet underappreciated projected changes in ITCZ width and strength, and highlight an emerging conceptual framework for understanding these changes. RECENT FINDINGS: Satellite observations and reanalysis data show a narrowing and strengthening of precipitation in the ITCZ over recent decades in both the Atlantic and Pacific basins, but little change in ITCZ location. Consistent with observations, coupled climate models predict no robust change in the zonal-mean ITCZ location over the twenty-first century. However, the majority of models project a narrowing of the ITCZ and weakening mean ascent. Interestingly, changes in ITCZ width and strength are strongly anti-correlated across models. SUMMARY: The ITCZ has narrowed over recent decades yet its location has remained approximately constant. Climate models project further narrowing and a weakening of the average ascent within the ITCZ as the climate continues to warm. Following intense work over the last ten years, the physical mechanisms controlling the ITCZ location are now well understood. The development of complementary theories for ITCZ width and strength is a current research priority. Outstanding challenges include understanding the ITCZ response to past climate changes and over land versus ocean regions, and better constraining all aspects of the ITCZ structure in model projections. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40641-018-0110-5) contains supplementary material, which is available to authorized users.

8.
Sci Rep ; 7(1): 17966, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269737

RESUMEN

Understanding changes in precipitation variability is essential for a complete explanation of the hydrologic cycle's response to warming and its impacts. While changes in mean and extreme precipitation have been studied intensively, precipitation variability has received less attention, despite its theoretical and practical importance. Here, we show that precipitation variability in most climate models increases over a majority of global land area in response to warming (66% of land has a robust increase in variability of seasonal-mean precipitation). Comparing recent decades to RCP8.5 projections for the end of the 21st century, we find that in the global, multi-model mean, precipitation variability increases 3-4% K-1 globally, 4-5% K-1 over land and 2-4% K-1 over ocean, and is remarkably robust on a range of timescales from daily to decadal. Precipitation variability increases by at least as much as mean precipitation and less than moisture and extreme precipitation for most models, regions, and timescales. We interpret this as being related to an increase in moisture which is partially mitigated by weakening circulation. We show that changes in observed daily variability in station data are consistent with increased variability.

9.
Proc Natl Acad Sci U S A ; 111(47): 16700-5, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385628

RESUMEN

In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)­as one might expect from greenhouse gas forcing­but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks­from satellite radiation and surface temperature data­suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...